Table of Contents
This is an old revision of the document!
Orientation Zx
The point group D3d is a subgroup of Oh. Many materials of relavance have near cubic symmetry with a small D3d distortion. It thus makes sense to label the sttes in D3d symmetry according to the states they branch from. For d orbitals the eg orbitals in Oh symmetry branch to orbitals that belong to the eg irriducible representation in D3d symmetry. The t2g orbitals in Oh symmetry branch to an orbital that belongs to the a1g irriducible representation and two that belong to the eg irricucible representation. We label the eg orbitals that decend from the eg irriducible representation in Oh symmetry eg$\sigma$ and the eg orbitals that decend from the t2g irriducible representation eg$\pi$ orbitals. (The mixing is given by the parameter Meg.)
As one can see in the list of supergroups of D3d, there are two different orientations of Oh that are a supergroup of this orientation of D3d. The different orientations of Oh with respect to D3d do however change the definitions of the eg$\pi$ and eg$\sigma$ orbitals. We inlcude three different representations of the orbitals and potentials for each setting of D3d symmetry. The orientation without aditional letter takes the tesseral harmonics as a basis. This basis does not relate to the states in Oh symmetry. The orientation with an aditional A or B relate to the two differnt supergroup representations of the Oh point group.
Symmetry Operations
In the D3d Point Group, with orientation Zx there are the following symmetry operations
Operator | Orientation |
---|---|
$\text{E}$ | $\{0,0,0\}$ , |
$C_3$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , |
$C_2$ | $\{1,0,0\}$ , $\left\{1,\sqrt{3},0\right\}$ , $\left\{1,-\sqrt{3},0\right\}$ , |
$\text{i}$ | $\{0,0,0\}$ , |
$S_6$ | $\{0,0,1\}$ , $\{0,0,-1\}$ , |
$\sigma _d$ | $\{1,0,0\}$ , $\left\{1,\sqrt{3},0\right\}$ , $\left\{1,-\sqrt{3},0\right\}$ , |
Different Settings
Character Table
$ $ | $ \text{E} \,{\text{(1)}} $ | $ C_3 \,{\text{(2)}} $ | $ C_2 \,{\text{(3)}} $ | $ \text{i} \,{\text{(1)}} $ | $ S_6 \,{\text{(2)}} $ | $ \sigma_d \,{\text{(3)}} $ |
---|---|---|---|---|---|---|
$ A_{1g} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ | $ 1 $ |
$ A_{2g} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ 1 $ | $ 1 $ | $ -1 $ |
$ E_g $ | $ 2 $ | $ -1 $ | $ 0 $ | $ 2 $ | $ -1 $ | $ 0 $ |
$ A_{1u} $ | $ 1 $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ |
$ A_{2u} $ | $ 1 $ | $ 1 $ | $ -1 $ | $ -1 $ | $ -1 $ | $ 1 $ |
$ E_u $ | $ 2 $ | $ -1 $ | $ 0 $ | $ -2 $ | $ 1 $ | $ 0 $ |
Product Table
$ $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ |
---|---|---|---|---|---|---|
$ A_{1g} $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ |
$ A_{2g} $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ |
$ E_g $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ |
$ A_{1u} $ | $ A_{1u} $ | $ A_{2u} $ | $ E_u $ | $ A_{1g} $ | $ A_{2g} $ | $ E_g $ |
$ A_{2u} $ | $ A_{2u} $ | $ A_{1u} $ | $ E_u $ | $ A_{2g} $ | $ A_{1g} $ | $ E_g $ |
$ E_u $ | $ E_u $ | $ E_u $ | $ A_{1u}+A_{2u}+E_u $ | $ E_g $ | $ E_g $ | $ A_{1g}+A_{2g}+E_g $ |
Sub Groups with compatible settings
Super Groups with compatible settings
Invariant Potential expanded on renormalized spherical Harmonics
Any potential (function) can be written as a sum over spherical harmonics. $$V(r,\theta,\phi) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} A_{k,m}(r) C^{(m)}_k(\theta,\phi)$$ Here $A_{k,m}(r)$ is a radial function and $C^{(m)}_k(\theta,\phi)$ a renormalised spherical harmonics. $$C^{(m)}_k(\theta,\phi)=\sqrt{\frac{4\pi}{2k+1}}Y^{(m)}_k(\theta,\phi)$$ The presence of symmetry induces relations between the expansion coefficients such that $V(r,\theta,\phi)$ is invariant under all symmetry operations. For the D3d Point group with orientation Zx the form of the expansion coefficients is:
Expansion
$$A_{k,m} = \begin{cases} A(0,0) & k=0\land m=0 \\ A(2,0) & k=2\land m=0 \\ i B(4,3) & k=4\land (m=-3\lor m=3) \\ A(4,0) & k=4\land m=0 \\ A(6,6) & k=6\land (m=-6\lor m=6) \\ i B(6,3) & k=6\land (m=-3\lor m=3) \\ A(6,0) & k=6\land m=0 \end{cases}$$
Input format suitable for Mathematica (Quanty.nb)
- Akm_D3d_Zx.Quanty.nb
Akm[k_,m_]:=Piecewise[{{A[0, 0], k == 0 && m == 0}, {A[2, 0], k == 2 && m == 0}, {I*B[4, 3], k == 4 && (m == -3 || m == 3)}, {A[4, 0], k == 4 && m == 0}, {A[6, 6], k == 6 && (m == -6 || m == 6)}, {I*B[6, 3], k == 6 && (m == -3 || m == 3)}, {A[6, 0], k == 6 && m == 0}}, 0]
Input format suitable for Quanty
- Akm_D3d_Zx.Quanty
Akm = {{0, 0, A(0,0)} , {2, 0, A(2,0)} , {4, 0, A(4,0)} , {4,-3, (I)*(B(4,3))} , {4, 3, (I)*(B(4,3))} , {6, 0, A(6,0)} , {6,-3, (I)*(B(6,3))} , {6, 3, (I)*(B(6,3))} , {6,-6, A(6,6)} , {6, 6, A(6,6)} }
One particle coupling on a basis of spherical harmonics
The operator representing the potential in second quantisation is given as: $$ O = \sum_{n'',l'',m'',n',l',m'} \left\langle \psi_{n'',l'',m''}(r,\theta,\phi) \left| V(r,\theta,\phi) \right| \psi_{n',l',m'}(r,\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$ For the quantisation of the wave-function (physical meaning of the indices n,l,m) we can choose a basis of spherical harmonics times some radial function, i.e. $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{m}^{(l)}(\theta,\phi)$. With this choice the integral for the expectation value in front of the creation and annihilation operators separates into a radial part and angular part. The angular part has an analytical solution, the radial integral is cast int a parameter. $$ A_{n''l'',n'l'}(k,m) = \left\langle R_{n'',l''} \left| A_{k,m}(r) \right| R_{n',l'} \right\rangle $$ Note the difference between the function $A_{k,m}$ and the parameter $A_{n''l'',n'l'}(k,m)$
we can express the operator as $$ O = \sum_{n'',l'',m'',n',l',m',k,m} A_{n''l'',n'l'}(k,m) \left\langle Y_{l''}^{(m'')}(\theta,\phi) \left| C_{k}^{(m)}(\theta,\phi) \right| Y_{l'}^{(m')}(\theta,\phi) \right\rangle a^{\dagger}_{n'',l'',m''}a^{\phantom{\dagger}}_{n',l',m'}$$
The table below shows the expectation value of $O$ on a basis of spherical harmonics. We suppressed the principle quantum number indices. Note that in principle $A_{l'',l'}(k,m)$ can be complex. Instead of allowing complex parameters we took $A_{l'',l'}(k,m) + \mathrm{I}\, B_{l'',l'}(k,m)$ (with both A and B real) as the expansion parameter.
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ {Y_{0}^{(0)}} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{3} i \text{Bpf}(4,3) $ | $ 0 $ |
$ {Y_{0}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{i \text{Bpf}(4,3)}{3 \sqrt{3}} $ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $ 0 $ | $ -\frac{i \text{Bpf}(4,3)}{3 \sqrt{3}} $ |
$ {Y_{1}^{(1)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{3} i \text{Bpf}(4,3) $ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ |
$ {Y_{-2}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-1}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{0}^{(2)}} $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{1}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{2}^{(2)}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ -\frac{1}{3} i \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ {Y_{-3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{i \text{Bpf}(4,3)}{3 \sqrt{3}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{10}{143} i \sqrt{\frac{7}{3}} \text{Bff}(6,3)-\frac{1}{11} i \sqrt{7} \text{Bff}(4,3) $ | $ 0 $ | $ 0 $ | $ -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $ |
$ {Y_{-2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} i \text{Bpf}(4,3) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ -\frac{1}{33} i \sqrt{14} \text{Bff}(4,3)-\frac{5}{143} i \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ | $ 0 $ |
$ {Y_{-1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{33} i \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} i \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ |
$ {Y_{0}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{11} i \sqrt{7} \text{Bff}(4,3)-\frac{10}{143} i \sqrt{\frac{7}{3}} \text{Bff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{11} i \sqrt{7} \text{Bff}(4,3)-\frac{10}{143} i \sqrt{\frac{7}{3}} \text{Bff}(6,3) $ |
$ {Y_{1}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{33} i \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} i \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ |
$ {Y_{2}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ -\frac{1}{3} i \text{Bpf}(4,3) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ -\frac{1}{33} i \sqrt{14} \text{Bff}(4,3)-\frac{5}{143} i \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ |
$ {Y_{3}^{(3)}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{i \text{Bpf}(4,3)}{3 \sqrt{3}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ -\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $ | $ 0 $ | $ 0 $ | $ \frac{10}{143} i \sqrt{\frac{7}{3}} \text{Bff}(6,3)-\frac{1}{11} i \sqrt{7} \text{Bff}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0) $ |
Rotation matrix to symmetry adapted functions (choice is not unique)
Instead of a basis of spherical harmonics one can chose any other basis, which is given by a unitary transformation. Here we choose a rotation that simplifies the representation of the crystal field
$ $ | $ {Y_{0}^{(0)}} $ | $ {Y_{-1}^{(1)}} $ | $ {Y_{0}^{(1)}} $ | $ {Y_{1}^{(1)}} $ | $ {Y_{-2}^{(2)}} $ | $ {Y_{-1}^{(2)}} $ | $ {Y_{0}^{(2)}} $ | $ {Y_{1}^{(2)}} $ | $ {Y_{2}^{(2)}} $ | $ {Y_{-3}^{(3)}} $ | $ {Y_{-2}^{(3)}} $ | $ {Y_{-1}^{(3)}} $ | $ {Y_{0}^{(3)}} $ | $ {Y_{1}^{(3)}} $ | $ {Y_{2}^{(3)}} $ | $ {Y_{3}^{(3)}} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ 1 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_y $ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_z $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 1 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_x $ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ -\frac{1}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ d_{\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{i}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 1 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{xz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ -\frac{1}{\sqrt{2}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{x^2-y^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \frac{1}{\sqrt{2}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{y\left(3x^2-y^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ |
$ f_{\text{xyz}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{i}{\sqrt{2}} $ | $ 0 $ |
$ f_{y\left(5z^2-r^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ \frac{i}{\sqrt{2}} $ | $ 0 $ | $ 0 $ |
$ f_{z\left(5z^2-3r^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 1 $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{x\left(5z^2-r^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ -\frac{1}{\sqrt{2}} $ | $ 0 $ | $ 0 $ |
$ f_{z\left(x^2-y^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ |
$ f_{x\left(x^2-3y^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{\sqrt{2}} $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ -\frac{1}{\sqrt{2}} $ |
One particle coupling on a basis of symmetry adapted functions
After rotation we find
$ $ | $ \text{s} $ | $ p_y $ | $ p_z $ | $ p_x $ | $ d_{\text{xy}} $ | $ d_{\text{yz}} $ | $ d_{3z^2-r^2} $ | $ d_{\text{xz}} $ | $ d_{x^2-y^2} $ | $ f_{y\left(3x^2-y^2\right)} $ | $ f_{\text{xyz}} $ | $ f_{y\left(5z^2-r^2\right)} $ | $ f_{z\left(5z^2-3r^2\right)} $ | $ f_{x\left(5z^2-r^2\right)} $ | $ f_{z\left(x^2-y^2\right)} $ | $ f_{x\left(x^2-3y^2\right)} $ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$ \text{s} $ | $ \text{Ass}(0,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ p_y $ | $\color{darkred}{ 0 }$ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{3} \text{Bpf}(4,3) $ | $ 0 $ |
$ p_z $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{App}(0,0)+\frac{2}{5} \text{App}(2,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{3} \sqrt{\frac{2}{3}} \text{Bpf}(4,3) $ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ p_x $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{App}(0,0)-\frac{1}{5} \text{App}(2,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{3} \text{Bpf}(4,3) $ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ |
$ d_{\text{xy}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{yz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{3z^2-r^2} $ | $ \frac{\text{Asd}(2,0)}{\sqrt{5}} $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{2}{7} \text{Add}(2,0)+\frac{2}{7} \text{Add}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{\text{xz}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)+\frac{1}{7} \text{Add}(2,0)-\frac{4}{21} \text{Add}(4,0) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ d_{x^2-y^2} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{3} \sqrt{\frac{5}{7}} \text{Bdd}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Add}(0,0)-\frac{2}{7} \text{Add}(2,0)+\frac{1}{21} \text{Add}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ |
$ f_{y\left(3x^2-y^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{3} \sqrt{\frac{2}{3}} \text{Bpf}(4,3) $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)-\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $ | $ 0 $ | $ 0 $ | $ \frac{10}{143} \sqrt{\frac{14}{3}} \text{Bff}(6,3)-\frac{1}{11} \sqrt{14} \text{Bff}(4,3) $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{\text{xyz}} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{1}{3} \text{Bpf}(4,3) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{33} \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ | $ 0 $ |
$ f_{y\left(5z^2-r^2\right)} $ | $\color{darkred}{ 0 }$ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ \frac{1}{33} \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ |
$ f_{z\left(5z^2-3r^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{3}{7}} \text{Apf}(2,0)+\frac{4 \text{Apf}(4,0)}{3 \sqrt{21}} $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ \frac{10}{143} \sqrt{\frac{14}{3}} \text{Bff}(6,3)-\frac{1}{11} \sqrt{14} \text{Bff}(4,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{4}{15} \text{Aff}(2,0)+\frac{2}{11} \text{Aff}(4,0)+\frac{100}{429} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ | $ 0 $ |
$ f_{x\left(5z^2-r^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{3}{5} \sqrt{\frac{2}{7}} \text{Apf}(2,0)-\frac{1}{3} \sqrt{\frac{2}{7}} \text{Apf}(4,0) $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ \frac{1}{33} \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)+\frac{1}{5} \text{Aff}(2,0)+\frac{1}{33} \text{Aff}(4,0)-\frac{25}{143} \text{Aff}(6,0) $ | $ 0 $ | $ 0 $ |
$ f_{z\left(x^2-y^2\right)} $ | $\color{darkred}{ 0 }$ | $ \frac{1}{3} \text{Bpf}(4,3) $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ \frac{1}{33} \sqrt{14} \text{Bff}(4,3)+\frac{5}{143} \sqrt{42} \text{Bff}(6,3) $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{7}{33} \text{Aff}(4,0)+\frac{10}{143} \text{Aff}(6,0) $ | $ 0 $ |
$ f_{x\left(x^2-3y^2\right)} $ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $\color{darkred}{ 0 }$ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ \text{Aff}(0,0)-\frac{1}{3} \text{Aff}(2,0)+\frac{1}{11} \text{Aff}(4,0)-\frac{5}{429} \text{Aff}(6,0)+\frac{10}{13} \sqrt{\frac{7}{33}} \text{Aff}(6,6) $ |
Coupling for a single shell
Although the parameters $A_{l'',l'}(k,m)$ uniquely define the potential, there is no simple relation between these paramters and the eigenstates of the potential. In this section we replace the parameters $A_{l'',l'}(k,m)$ by paramters that relate to the eigen energies of the potential acting on or between two shells with angular momentum $l''$ and $l'$.
Click on one of the subsections to expand it or
Potential for s orbitals
Potential for p orbitals
Potential for d orbitals
Potential for f orbitals
Coupling between two shells
Click on one of the subsections to expand it or
Potential for s-d orbital mixing
Potential for p-f orbital mixing
Table of several point groups
Return to Main page on Point Groups
Nonaxial groups | C1 | Cs | Ci | ||||
---|---|---|---|---|---|---|---|
Cn groups | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Dn groups | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
Cnv groups | C2v | C3v | C4v | C5v | C6v | C7v | C8v |
Cnh groups | C2h | C3h | C4h | C5h | C6h | ||
Dnh groups | D2h | D3h | D4h | D5h | D6h | D7h | D8h |
Dnd groups | D2d | D3d | D4d | D5d | D6d | D7d | D8d |
Sn groups | S2 | S4 | S6 | S8 | S10 | S12 | |
Cubic groups | T | Th | Td | O | Oh | I | Ih |
Linear groups | C$\infty$v | D$\infty$h |